Structural study of biotic and abiotic poorly-crystalline manganese oxides using atomic pair distribution function analysis

نویسندگان

  • Mengqiang Zhu
  • Christopher L. Farrow
  • Jeffrey E. Post
  • Kenneth J.T. Livi
  • Simon J.L. Billinge
  • Matthew Ginder-Vogel
  • Donald L. Sparks
چکیده

Manganese (Mn) oxides are among the most reactive natural minerals and play an important role in elemental cycling in oceanic and terrestrial environments. A large portion of naturally-occurring Mn oxides tend to be poorly-crystalline and/or nanocrystalline, with not fully resolved crystal structures. In this study, the crystal structures of their synthetic analogs including acid birnessite (AcidBir), d-MnO2, polymeric MnO2 (PolyMnO2) and a bacteriogenic Mn oxide (BioMnOx), have been revealed using atomic pair distribution function (PDF) analysis. Results unambiguously verify that these Mn oxides are layered materials. The best models that accurately allow simulation of pair distribution functions (PDFs) belong to the monoclinic C12/m1 space group with a disk-like shape. The single MnO6 layers in the average structures deviate significantly from hexagonal symmetry, in contrast to the results of previous studies based on X-ray diffraction analysis in reciprocal space. Manganese occupancies in MnO6 layers are estimated to be 0.936, 0.847, 0.930 and 0.935, for AcidBir, BioMnOx, d-MnO2 and PolyMnO2, respectively; however, occupancies of interlayer cations and water molecules cannot be accurately determined using the models in this study. The coherent scattering domains (CSDs) of PolyMnO2, d-MnO2 and BioMnOx are at the nanometer scale, comprising one to three MnO6 layers stacked with a high disorder in the crystallographic c-axis direction. Overall, the results of this study advance our understanding of the mineralogy of Mn oxide minerals in the environment. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Acquisition Pair Distribution Function (RA-PDF) Analysis

An image plate (IP) detector coupled with high energy synchrotron radiation was used for atomic pair distribution function (PDF) analysis, with high probed momentum transfer Qmax ≤ 28.5 Å−1 from crystalline materials. Materials with different structural complexities were measured to test the validity of the quantitative data analysis. Experimental results are presented here for crystalline Ni, ...

متن کامل

Pair distribution function (PDF) analysis of mesoporous α-Fe2O3 and Cr2O3.

We have measured atomic pair distribution functions of novel mesoporous metal oxides, α-Fe2O3 and Cr2O3. These have an ordered pore mosaic as well as crystalline structure within the pore walls, making them an interesting class of materials to characterise. Comparison of "bulk" and mesoporous data sets has allowed an estimate of long range structural coherence to be derived; ≈125 Å and ≈290 Å f...

متن کامل

Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens.

The reductive dissolution of poorly crystalline ferric oxides in the presence of cysteine was investigated to evaluate the potential of cysteine as a possible electron carrier to stimulate the reduction of iron(III) oxides by Geobacter sulfurreducens. The extent and rate of biotic and abiotic reduction of iron(III) oxides in the presence of cysteine at various concentrations were compared. Iron...

متن کامل

Arsenite oxidation by a poorly-crystalline manganese oxide. 3. Arsenic and manganese desorption.

Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese oxides (Mn oxides) have the ability to decrease overall As mobility both by oxidizing toxic arsenite (As(III)) to less toxic arsenate (As(V)), and by sorbing As. However, the effect of competing ions on the mobility of As sorbed on Mn-oxide ...

متن کامل

Atomic-scale structure of nanocrystalline CeO2–ZrO2 oxides by total x-ray diffraction and pair distribution function analysis

Total x-ray diffraction and atomic pair distribution function analysis have been used to determine the atomic ordering in nanocrystalline (∼1.5 nm in size) CeO2–ZrO2 prepared by a sol–gel route. Experimental data show that the oxides are a structurally and chemically inhomogeneous mixture of nanoscale domains with cubic-type and monoclinic-type atomic ordering, predominantly occupied by Ce and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012